Mycobacterial Phenolic Glycolipids Selectively Disable TRIF-Dependent TLR4 Signaling in Macrophages
نویسندگان
چکیده
Phenolic glycolipids (PGLs) are cell wall components of a subset of pathogenic mycobacteria, with immunomodulatory properties. Here, we show that in addition, PGLs exert antibactericidal activity by limiting the production of nitric oxide synthase (iNOS) in mycobacteria-infected macrophages. PGL-mediated downregulation of iNOS was complement receptor 3-dependent and comparably induced by bacterial and purified PGLs. Using Mycobacterium leprae PGL-1 as a model, we found that PGLs dampen the toll-like receptor (TLR)4 signaling pathway, with macrophage exposure to PGLs leading to significant reduction in TIR-domain-containing adapter-inducing interferon-β (TRIF) protein level. PGL-driven decrease in TRIF operated posttranscriptionally and independently of Src-family tyrosine kinases, lysosomal and proteasomal degradation. It resulted in the defective production of TRIF-dependent IFN-β and CXCL10 in TLR4-stimulated macrophages, in addition to iNOS. Our results unravel a mechanism by which PGLs hijack both the bactericidal and inflammatory responses of host macrophages. Moreover, they identify TRIF as a critical node in the crosstalk between CR3 and TLR4.
منابع مشابه
Selective modulation of TLR4-activated inflammatory responses by altered iron homeostasis in mice.
Mice deficient in the hemochromatosis gene, Hfe, have attenuated inflammatory responses to Salmonella infection associated with decreased macrophage TNF-alpha and IL-6 biosynthesis after exposure to LPS. In this study, we show that the abnormal cytokine production is related to impaired TLR4 signaling. Despite their abnormal response to LPS, Hfe KO macrophages produced amounts of TNF-alpha simi...
متن کاملCYLD Proteolysis Protects Macrophages from TNF-Mediated Auto-necroptosis Induced by LPS and Licensed by Type I IFN.
Tumor necrosis factor (TNF) induces necroptosis, a RIPK3/MLKL-dependent form of inflammatory cell death. In response to infection by Gram-negative bacteria, multiple receptors on macrophages, including TLR4, TNF, and type I IFN receptors, are concurrently activated, but it is unclear how they crosstalk to regulate necroptosis. We report that TLR4 activates CASPASE-8 to cleave and remove the deu...
متن کاملAbsence of TRAM restricts Toll-like receptor 4 signaling in vascular endothelial cells to the MyD88 pathway.
Mammalian cells respond to bacterial lipopolysaccharide (LPS) through a cognate receptor: Toll-like receptor 4 (TLR4). The signaling pathways, which link TLR4 to the proinflammatory transcription factor nuclear factor kappaB (NF-kappaB), occur through the intracellular docking proteins MyD88 and Trif. We hypothesize that unlike antigen-presenting cells, vascular endothelial cells (ECs) lack the...
متن کاملTRIF signaling stimulates translation of TNF-alpha mRNA via prolonged activation of MK2.
The adapter protein TRIF mediates signal transduction through TLR3 and TLR4, inducing production of type I IFNs and inflammatory cytokines. The present study investigates the mechanisms by which TRIF signaling controls TNF-alpha biosynthesis. We provide evidence that, in LPS-stimulated murine dendritic cells, TRIF stimulates TNF-alpha biosynthesis selectively at the posttranscriptional level by...
متن کاملCD14 dependence of TLR4 endocytosis and TRIF signaling displays ligand specificity and is dissociable in endotoxin tolerance.
Dimerization of Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD2) heterodimers is critical for both MyD88- and TIR-domain-containing adapter-inducing IFN-β (TRIF)-mediated signaling pathways. Recently, Zanoni et al. [(2011) Cell 147(4):868-880] reported that cluster of differentiation 14 (CD14) is required for LPS-/Escherichia coli- induced TLR4 internalization into endosomes a...
متن کامل